phitter.discrete package
Subpackages
- phitter.discrete.discrete_distributions package
- Submodules
- phitter.discrete.discrete_distributions.bernoulli module
Bernoulli
Bernoulli.cdf()
Bernoulli.central_moments()
Bernoulli.get_parameters()
Bernoulli.kurtosis
Bernoulli.mean
Bernoulli.median
Bernoulli.mode
Bernoulli.name
Bernoulli.non_central_moments()
Bernoulli.num_parameters
Bernoulli.parameter_restrictions()
Bernoulli.parameters_example
Bernoulli.pmf()
Bernoulli.ppf()
Bernoulli.sample()
Bernoulli.skewness
Bernoulli.standard_deviation
Bernoulli.variance
- phitter.discrete.discrete_distributions.binomial module
Binomial
Binomial.cdf()
Binomial.central_moments()
Binomial.get_parameters()
Binomial.kurtosis
Binomial.mean
Binomial.median
Binomial.mode
Binomial.name
Binomial.non_central_moments()
Binomial.num_parameters
Binomial.parameter_restrictions()
Binomial.parameters_example
Binomial.pmf()
Binomial.ppf()
Binomial.sample()
Binomial.skewness
Binomial.standard_deviation
Binomial.variance
- phitter.discrete.discrete_distributions.geometric module
Geometric
Geometric.cdf()
Geometric.central_moments()
Geometric.get_parameters()
Geometric.kurtosis
Geometric.mean
Geometric.median
Geometric.mode
Geometric.name
Geometric.non_central_moments()
Geometric.num_parameters
Geometric.parameter_restrictions()
Geometric.parameters_example
Geometric.pmf()
Geometric.ppf()
Geometric.sample()
Geometric.skewness
Geometric.standard_deviation
Geometric.variance
- phitter.discrete.discrete_distributions.hypergeometric module
Hypergeometric
Hypergeometric.cdf()
Hypergeometric.central_moments()
Hypergeometric.get_parameters()
Hypergeometric.kurtosis
Hypergeometric.mean
Hypergeometric.median
Hypergeometric.mode
Hypergeometric.name
Hypergeometric.non_central_moments()
Hypergeometric.num_parameters
Hypergeometric.parameter_restrictions()
Hypergeometric.parameters_example
Hypergeometric.pmf()
Hypergeometric.ppf()
Hypergeometric.sample()
Hypergeometric.skewness
Hypergeometric.standard_deviation
Hypergeometric.variance
- phitter.discrete.discrete_distributions.logarithmic module
Logarithmic
Logarithmic.cdf()
Logarithmic.central_moments()
Logarithmic.get_parameters()
Logarithmic.kurtosis
Logarithmic.mean
Logarithmic.median
Logarithmic.mode
Logarithmic.name
Logarithmic.non_central_moments()
Logarithmic.num_parameters
Logarithmic.parameter_restrictions()
Logarithmic.parameters_example
Logarithmic.pmf()
Logarithmic.ppf()
Logarithmic.sample()
Logarithmic.skewness
Logarithmic.standard_deviation
Logarithmic.variance
- phitter.discrete.discrete_distributions.negative_binomial module
NegativeBinomial
NegativeBinomial.cdf()
NegativeBinomial.central_moments()
NegativeBinomial.get_parameters()
NegativeBinomial.kurtosis
NegativeBinomial.mean
NegativeBinomial.median
NegativeBinomial.mode
NegativeBinomial.name
NegativeBinomial.non_central_moments()
NegativeBinomial.num_parameters
NegativeBinomial.parameter_restrictions()
NegativeBinomial.parameters_example
NegativeBinomial.pmf()
NegativeBinomial.ppf()
NegativeBinomial.sample()
NegativeBinomial.skewness
NegativeBinomial.standard_deviation
NegativeBinomial.variance
- phitter.discrete.discrete_distributions.poisson module
Poisson
Poisson.cdf()
Poisson.central_moments()
Poisson.get_parameters()
Poisson.kurtosis
Poisson.mean
Poisson.median
Poisson.mode
Poisson.name
Poisson.non_central_moments()
Poisson.num_parameters
Poisson.parameter_restrictions()
Poisson.parameters_example
Poisson.pmf()
Poisson.ppf()
Poisson.sample()
Poisson.skewness
Poisson.standard_deviation
Poisson.variance
- phitter.discrete.discrete_distributions.uniform module
Uniform
Uniform.cdf()
Uniform.central_moments()
Uniform.get_parameters()
Uniform.kurtosis
Uniform.mean
Uniform.median
Uniform.mode
Uniform.name
Uniform.non_central_moments()
Uniform.num_parameters
Uniform.parameter_restrictions()
Uniform.parameters_example
Uniform.pmf()
Uniform.ppf()
Uniform.sample()
Uniform.skewness
Uniform.standard_deviation
Uniform.variance
- Module contents
- phitter.discrete.discrete_measures package
- phitter.discrete.discrete_statistical_tests package
Submodules
phitter.discrete.phitter_discrete module
- class phitter.discrete.phitter_discrete.PhitterDiscrete(data, confidence_level=0.95, minimum_sse=inf, subsample_size=None, subsample_estimation_size=None, distributions_to_fit='all', exclude_distributions='any')
Bases:
object
- fit(n_workers=1)
- parse_rgba_color(rgba_string)
- plot_distribution_pmf_matplotlib(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap, plot_line_color, plot_line_width)
- plot_distribution_pmf_plotly(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap, plot_line_color, plot_line_width, plotly_plot_renderer)
- plot_ecdf_distribution_matplotlib(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_empirical_bar_color, plot_empirical_bargap, plot_distribution_line_color, plot_distribution_line_width)
- plot_ecdf_distribution_plotly(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_empirical_bar_color, plot_empirical_bargap, plot_distribution_line_color, plot_distribution_line_width, plotly_plot_renderer)
- plot_ecdf_matplotlib(plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color)
- plot_ecdf_plotly(plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap, plotly_plot_renderer)
- plot_histogram_distributions_pmf_matplotlib(n_distributions, n_distributions_visible, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap)
- plot_histogram_distributions_pmf_plotly(n_distributions, n_distributions_visible, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap, plotly_plot_renderer)
- plot_histogram_matplotlib(plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap)
- plot_histogram_plotly(plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap, plotly_plot_renderer)
- process_distribution(id_distribution)
- Return type:
tuple
[str
,dict
,Any
] |None
- qq_plot_matplotlib(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, qq_marker_name, qq_marker_color, qq_marker_size)
- qq_plot_plotly(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, qq_marker_name, qq_marker_color, qq_marker_size, plotly_plot_renderer)
- qq_plot_regression_matplotlib(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, qq_marker_name, qq_marker_color, qq_marker_size, regression_line_name, regression_line_color, regression_line_width)
- qq_plot_regression_plotly(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, qq_marker_name, qq_marker_color, qq_marker_size, regression_line_name, regression_line_color, regression_line_width, plotly_plot_renderer)
- test(test_function, label, distribution)