phitter.discrete package
Subpackages
- phitter.discrete.discrete_distributions package
- Submodules
- phitter.discrete.discrete_distributions.bernoulli module
BernoulliBernoulli.cdf()Bernoulli.central_moments()Bernoulli.get_parameters()Bernoulli.kurtosisBernoulli.meanBernoulli.medianBernoulli.modeBernoulli.nameBernoulli.non_central_moments()Bernoulli.num_parametersBernoulli.parameter_restrictions()Bernoulli.parameters_exampleBernoulli.pmf()Bernoulli.ppf()Bernoulli.sample()Bernoulli.skewnessBernoulli.standard_deviationBernoulli.variance
- phitter.discrete.discrete_distributions.binomial module
BinomialBinomial.cdf()Binomial.central_moments()Binomial.get_parameters()Binomial.kurtosisBinomial.meanBinomial.medianBinomial.modeBinomial.nameBinomial.non_central_moments()Binomial.num_parametersBinomial.parameter_restrictions()Binomial.parameters_exampleBinomial.pmf()Binomial.ppf()Binomial.sample()Binomial.skewnessBinomial.standard_deviationBinomial.variance
- phitter.discrete.discrete_distributions.geometric module
GeometricGeometric.cdf()Geometric.central_moments()Geometric.get_parameters()Geometric.kurtosisGeometric.meanGeometric.medianGeometric.modeGeometric.nameGeometric.non_central_moments()Geometric.num_parametersGeometric.parameter_restrictions()Geometric.parameters_exampleGeometric.pmf()Geometric.ppf()Geometric.sample()Geometric.skewnessGeometric.standard_deviationGeometric.variance
- phitter.discrete.discrete_distributions.hypergeometric module
HypergeometricHypergeometric.cdf()Hypergeometric.central_moments()Hypergeometric.get_parameters()Hypergeometric.kurtosisHypergeometric.meanHypergeometric.medianHypergeometric.modeHypergeometric.nameHypergeometric.non_central_moments()Hypergeometric.num_parametersHypergeometric.parameter_restrictions()Hypergeometric.parameters_exampleHypergeometric.pmf()Hypergeometric.ppf()Hypergeometric.sample()Hypergeometric.skewnessHypergeometric.standard_deviationHypergeometric.variance
- phitter.discrete.discrete_distributions.logarithmic module
LogarithmicLogarithmic.cdf()Logarithmic.central_moments()Logarithmic.get_parameters()Logarithmic.kurtosisLogarithmic.meanLogarithmic.medianLogarithmic.modeLogarithmic.nameLogarithmic.non_central_moments()Logarithmic.num_parametersLogarithmic.parameter_restrictions()Logarithmic.parameters_exampleLogarithmic.pmf()Logarithmic.ppf()Logarithmic.sample()Logarithmic.skewnessLogarithmic.standard_deviationLogarithmic.variance
- phitter.discrete.discrete_distributions.negative_binomial module
NegativeBinomialNegativeBinomial.cdf()NegativeBinomial.central_moments()NegativeBinomial.get_parameters()NegativeBinomial.kurtosisNegativeBinomial.meanNegativeBinomial.medianNegativeBinomial.modeNegativeBinomial.nameNegativeBinomial.non_central_moments()NegativeBinomial.num_parametersNegativeBinomial.parameter_restrictions()NegativeBinomial.parameters_exampleNegativeBinomial.pmf()NegativeBinomial.ppf()NegativeBinomial.sample()NegativeBinomial.skewnessNegativeBinomial.standard_deviationNegativeBinomial.variance
- phitter.discrete.discrete_distributions.poisson module
PoissonPoisson.cdf()Poisson.central_moments()Poisson.get_parameters()Poisson.kurtosisPoisson.meanPoisson.medianPoisson.modePoisson.namePoisson.non_central_moments()Poisson.num_parametersPoisson.parameter_restrictions()Poisson.parameters_examplePoisson.pmf()Poisson.ppf()Poisson.sample()Poisson.skewnessPoisson.standard_deviationPoisson.variance
- phitter.discrete.discrete_distributions.uniform module
UniformUniform.cdf()Uniform.central_moments()Uniform.get_parameters()Uniform.kurtosisUniform.meanUniform.medianUniform.modeUniform.nameUniform.non_central_moments()Uniform.num_parametersUniform.parameter_restrictions()Uniform.parameters_exampleUniform.pmf()Uniform.ppf()Uniform.sample()Uniform.skewnessUniform.standard_deviationUniform.variance
- Module contents
- phitter.discrete.discrete_measures package
- phitter.discrete.discrete_statistical_tests package
Submodules
phitter.discrete.phitter_discrete module
- class phitter.discrete.phitter_discrete.PhitterDiscrete(data, confidence_level=0.95, minimum_sse=inf, subsample_size=None, subsample_estimation_size=None, distributions_to_fit='all', exclude_distributions='any')
Bases:
object- fit(n_workers=1)
- parse_rgba_color(rgba_string)
- plot_distribution_pmf_matplotlib(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap, plot_line_color, plot_line_width)
- plot_distribution_pmf_plotly(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap, plot_line_color, plot_line_width, plotly_plot_renderer)
- plot_ecdf_distribution_matplotlib(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_empirical_bar_color, plot_empirical_bargap, plot_distribution_line_color, plot_distribution_line_width)
- plot_ecdf_distribution_plotly(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_empirical_bar_color, plot_empirical_bargap, plot_distribution_line_color, plot_distribution_line_width, plotly_plot_renderer)
- plot_ecdf_matplotlib(plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color)
- plot_ecdf_plotly(plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap, plotly_plot_renderer)
- plot_histogram_distributions_pmf_matplotlib(n_distributions, n_distributions_visible, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap)
- plot_histogram_distributions_pmf_plotly(n_distributions, n_distributions_visible, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap, plotly_plot_renderer)
- plot_histogram_matplotlib(plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap)
- plot_histogram_plotly(plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, plot_bar_color, plot_bargap, plotly_plot_renderer)
- process_distribution(id_distribution)
- Return type:
tuple[str,dict,Any] |None
- qq_plot_matplotlib(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, qq_marker_name, qq_marker_color, qq_marker_size)
- qq_plot_plotly(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, qq_marker_name, qq_marker_color, qq_marker_size, plotly_plot_renderer)
- qq_plot_regression_matplotlib(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, qq_marker_name, qq_marker_color, qq_marker_size, regression_line_name, regression_line_color, regression_line_width)
- qq_plot_regression_plotly(id_distribution, plot_title, plot_xaxis_title, plot_yaxis_title, plot_legend_title, plot_height, plot_width, qq_marker_name, qq_marker_color, qq_marker_size, regression_line_name, regression_line_color, regression_line_width, plotly_plot_renderer)
- test(test_function, label, distribution)