phitter.discrete.discrete_distributions package
Submodules
phitter.discrete.discrete_distributions.bernoulli module
- class phitter.discrete.discrete_distributions.bernoulli.Bernoulli(parameters=None, discrete_measures=None, init_parameters_examples=False)
Bases:
object
Bernoulli distribution - Parameters Bernoulli Distribution: {“p”: *} - https://phitter.io/distributions/discrete/bernoulli
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(discrete_measures)
Calculate proper parameters of the distribution from sample discrete_measures. The parameters are calculated by formula.
- Parameters:
discrete_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“p”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pmf(x)
Probability mass function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.discrete.discrete_distributions.binomial module
- class phitter.discrete.discrete_distributions.binomial.Binomial(parameters=None, discrete_measures=None, init_parameters_examples=False)
Bases:
object
Binomial distribution - Parameters Binomial Distribution: {“n”: *, “p”: *} - https://phitter.io/distributions/discrete/binomial
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(discrete_measures)
Calculate proper parameters of the distribution from sample discrete_measures. The parameters are calculated by formula.
- Parameters:
discrete_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“n”: *, “p”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pmf(x)
Probability mass function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.discrete.discrete_distributions.geometric module
- class phitter.discrete.discrete_distributions.geometric.Geometric(parameters=None, discrete_measures=None, init_parameters_examples=False)
Bases:
object
Geometric distribution - Parameters Geometric Distribution: {“p”: *} - https://phitter.io/distributions/discrete/geometric
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(discrete_measures)
Calculate proper parameters of the distribution from sample discrete_measures. The parameters are calculated by formula.
- Parameters:
discrete_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“p”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pmf(x)
Probability mass function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.discrete.discrete_distributions.hypergeometric module
- class phitter.discrete.discrete_distributions.hypergeometric.Hypergeometric(parameters=None, discrete_measures=None, init_parameters_examples=False)
Bases:
object
Hypergeometric_distribution - Parameters Hypergeometric Distribution: {“N”: *, “K”: *, “n”: *} - https://phitter.io/distributions/discrete/hypergeometric
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(discrete_measures)
Calculate proper parameters of the distribution from sample discrete_measures. The parameters are calculated by formula.
- Parameters:
discrete_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“N”: *, “K”: *, “n”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pmf(x)
Probability mass function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.discrete.discrete_distributions.logarithmic module
- class phitter.discrete.discrete_distributions.logarithmic.Logarithmic(parameters=None, discrete_measures=None, init_parameters_examples=False)
Bases:
object
Logarithmic distribution - Parameters Logarithmic Distribution: {“p”: *} - https://phitter.io/distributions/discrete/logarithmic
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(discrete_measures)
Calculate proper parameters of the distribution from sample discrete_measures. The parameters are calculated by formula.
- Parameters:
discrete_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“p”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pmf(x)
Probability mass function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.discrete.discrete_distributions.negative_binomial module
- class phitter.discrete.discrete_distributions.negative_binomial.NegativeBinomial(parameters=None, discrete_measures=None, init_parameters_examples=False)
Bases:
object
Negative binomial distribution - Parameters NegativeBinomial Distribution: {“r”: *, “p”: *} - https://phitter.io/distributions/discrete/negative_binomial
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(discrete_measures)
Calculate proper parameters of the distribution from sample discrete_measures. The parameters are calculated by formula.
- Parameters:
discrete_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“r”: *, “p”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pmf(x)
Probability mass function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.discrete.discrete_distributions.poisson module
- class phitter.discrete.discrete_distributions.poisson.Poisson(parameters=None, discrete_measures=None, init_parameters_examples=False)
Bases:
object
Poisson distribution - Parameters Poisson Distribution: {“lambda”: *} - https://phitter.io/distributions/discrete/poisson
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(discrete_measures)
Calculate proper parameters of the distribution from sample discrete_measures. The parameters are calculated by formula.
- Parameters:
discrete_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“lambda”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pmf(x)
Probability mass function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.discrete.discrete_distributions.uniform module
- class phitter.discrete.discrete_distributions.uniform.Uniform(parameters=None, discrete_measures=None, init_parameters_examples=False)
Bases:
object
Uniform distribution - Parameters Uniform Distribution: {“a”: *, “b”: *} - https://phitter.io/distributions/discrete/uniform
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(discrete_measures)
Calculate proper parameters of the distribution from sample discrete_measures. The parameters are calculated by formula.
- Parameters:
discrete_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“a”: *, “b”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pmf(x)
Probability mass function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance