phitter.continuous.continuous_distributions package
Submodules
phitter.continuous.continuous_distributions.alpha module
- class phitter.continuous.continuous_distributions.alpha.Alpha(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Alpha distribution - Parameters Alpha Distribution: {“alpha”: *, “loc”: *, “scale”: *} - https://phitter.io/distributions/continuous/alpha
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “loc”: *, “scale”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.arcsine module
- class phitter.continuous.continuous_distributions.arcsine.Arcsine(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Arcsine distribution - Parameters Arcsine Distribution: {“a”: *, “b”: *} - https://phitter.io/distributions/continuous/arcsine
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“a”: *, “b”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.argus module
- class phitter.continuous.continuous_distributions.argus.Argus(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Argus distribution - Parameters Argus Distribution: {“chi”: *, “loc”: *, “scale”: *} - https://phitter.io/distributions/continuous/argus
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“chi”: *, “loc”: *, “scale”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.beta module
- class phitter.continuous.continuous_distributions.beta.Beta(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Beta distribution - Parameters Beta Distribution: {“alpha”: *, “beta”: *, “A”: *, “B”: *} - https://phitter.io/distributions/continuous/beta
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “beta”: *, “A”: *, “B”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.beta_prime module
- class phitter.continuous.continuous_distributions.beta_prime.BetaPrime(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Beta Prime Distribution - Parameters BetaPrime Distribution: {“alpha”: *, “beta”: *} - https://phitter.io/distributions/continuous/beta_prime
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “beta”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.beta_prime_4p module
- class phitter.continuous.continuous_distributions.beta_prime_4p.BetaPrime4P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Beta Prime 4P Distribution - Parameters BetaPrime4P Distribution: {“alpha”: *, “beta”: *, “loc”: *, “scale”: *} - https://phitter.io/distributions/continuous/beta_prime_4p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “beta”: *, “loc”: *, “scale”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.bradford module
- class phitter.continuous.continuous_distributions.bradford.Bradford(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Bradford distribution - Parameters Bradford Distribution: {“c”: *, “min”: *, “max”: *} - https://phitter.io/distributions/continuous/bradford
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“c”: *, “min”: *, “max”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.burr module
- class phitter.continuous.continuous_distributions.burr.Burr(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Burr distribution - Parameters Burr Distribution: {“A”: *, “B”: *, “C”: *} - https://phitter.io/distributions/continuous/burr
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“A”: *, “B”: *, “C”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.burr_4p module
- class phitter.continuous.continuous_distributions.burr_4p.Burr4P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Burr distribution - Parameters Burr4P Distribution: {“A”: *, “B”: *, “C”: *, “loc”: *} - https://phitter.io/distributions/continuous/burr_4p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“A”: *, “B”: *, “C”: *, “loc”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.cauchy module
- class phitter.continuous.continuous_distributions.cauchy.Cauchy(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Cauchy distribution - Parameters Cauchy Distribution: {“x0”: *, “gamma”: *} - https://phitter.io/distributions/continuous/cauchy
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“x0”: *, “gamma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.chi_square module
- class phitter.continuous.continuous_distributions.chi_square.ChiSquare(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Chi Square distribution - Parameters ChiSquare Distribution: {“df”: *} - https://phitter.io/distributions/continuous/chi_square
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“df”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.chi_square_3p module
- class phitter.continuous.continuous_distributions.chi_square_3p.ChiSquare3P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Chi Square distribution - Parameters ChiSquare3P Distribution: {“df”: *, “loc”: *, “scale”: *} - https://phitter.io/distributions/continuous/chi_square_3p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“df”: *, “loc”: *, “scale”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.dagum module
- class phitter.continuous.continuous_distributions.dagum.Dagum(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Dagum distribution - Parameters Dagum Distribution: {“a”: *, “b”: *, “p”: *} - https://phitter.io/distributions/continuous/dagum
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“a”: *, “b”: *, “p”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.dagum_4p module
- class phitter.continuous.continuous_distributions.dagum_4p.Dagum4P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Dagum distribution - Parameters Dagum4P Distribution: {“a”: *, “b”: *, “p”: *, “loc”: *} - https://phitter.io/distributions/continuous/dagum_4p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“a”: *, “b”: *, “p”: *, “loc”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.erlang module
- class phitter.continuous.continuous_distributions.erlang.Erlang(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Erlang distribution - Parameters Erlang Distribution: {“k”: *, “beta”: *} - https://phitter.io/distributions/continuous/erlang
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“k”: *, “beta”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restriction
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.erlang_3p module
- class phitter.continuous.continuous_distributions.erlang_3p.Erlang3P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Erlang 3p distribution - Parameters Erlang3P Distribution: {“k”: *, “beta”: *, “loc”: *} - https://phitter.io/distributions/continuous/erlang_3p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“k”: *, “beta”: *, “loc”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restriction
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.error_function module
- class phitter.continuous.continuous_distributions.error_function.ErrorFunction(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Error Function distribution - Parameters ErrorFunction Distribution: {“h”: *} - https://phitter.io/distributions/continuous/error_function
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“h”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.exponential module
- class phitter.continuous.continuous_distributions.exponential.Exponential(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Exponential distribution - Parameters Exponential Distribution: {“lambda”: *} - https://phitter.io/distributions/continuous/exponential
- cdf(x)
Cumulative distribution function. Calculated with known formula.
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“lambda”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.exponential_2p module
- class phitter.continuous.continuous_distributions.exponential_2p.Exponential2P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Exponential distribution - Parameters Exponential2P Distribution: {“lambda”: *, “loc”: *} - https://phitter.io/distributions/continuous/exponential_2p
- cdf(x)
Cumulative distribution function. Calculated with known formula.
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“lambda”: *, “loc”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.f module
- class phitter.continuous.continuous_distributions.f.F(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
F distribution - Parameters F Distribution: {“df1”: *, “df2”: *} - https://phitter.io/distributions/continuous/f
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“df1”: *, “df2”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.f_4p module
- class phitter.continuous.continuous_distributions.f_4p.F4P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
F distribution - Parameters F4P Distribution: {“df1”: *, “df2”: *, “loc”: *, “scale”: *} - https://phitter.io/distributions/continuous/f_4p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“df1”: *, “df2”: *, “loc”: *, “scale”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.fatigue_life module
- class phitter.continuous.continuous_distributions.fatigue_life.FatigueLife(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Fatigue life Distribution Also known as Birnbaum-Saunders distribution - Parameters FatigueLife Distribution: {“gamma”: *, “loc”: *, “scale”: *} - https://phitter.io/distributions/continuous/fatigue_life
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“gamma”: *, “loc”: *, “scale”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.folded_normal module
- class phitter.continuous.continuous_distributions.folded_normal.FoldedNormal(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Folded Normal Distribution - https://phitter.io/distributions/continuous/folded_normal
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (dict) – {“mu”: * , “variance”: * , “skewness”: * , “kurtosis”: * , “data”: * }
- Returns:
parameters
- Return type:
{“mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.frechet module
- class phitter.continuous.continuous_distributions.frechet.Frechet(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Fréchet Distribution Also known as inverse Weibull distribution (Scipy name) - https://phitter.io/distributions/continuous/frechet
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “loc”: *, “scale”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.gamma module
- class phitter.continuous.continuous_distributions.gamma.Gamma(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Gamma distribution - Parameters Gamma Distribution: {“alpha”: *, “beta”: *} - https://phitter.io/distributions/continuous/gamma
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “beta”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.gamma_3p module
- class phitter.continuous.continuous_distributions.gamma_3p.Gamma3P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Gamma distribution - Parameters Gamma3P Distribution: {“alpha”: *, “loc”: *, “beta”: *} - https://phitter.io/distributions/continuous/gamma_3p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “loc”: *, “beta”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.generalized_extreme_value module
- class phitter.continuous.continuous_distributions.generalized_extreme_value.GeneralizedExtremeValue(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Generalized Extreme Value Distribution - https://phitter.io/distributions/continuous/generalized_extreme_value
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“xi”: *, “mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.generalized_gamma module
- class phitter.continuous.continuous_distributions.generalized_gamma.GeneralizedGamma(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Generalized Gamma Distribution - https://phitter.io/distributions/continuous/generalized_gamma
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“a”: *, “d”: *, “p”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.generalized_gamma_4p module
- class phitter.continuous.continuous_distributions.generalized_gamma_4p.GeneralizedGamma4P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Generalized Gamma Distribution - https://phitter.io/distributions/continuous/generalized_gamma_4p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“a”: *, “d”: *, “p”: *, “loc”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.generalized_logistic module
- class phitter.continuous.continuous_distributions.generalized_logistic.GeneralizedLogistic(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Generalized Logistic Distribution
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“loc”: *, “scale”: *, “c”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.generalized_normal module
- class phitter.continuous.continuous_distributions.generalized_normal.GeneralizedNormal(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Generalized normal distribution - Parameters GeneralizedNormal Distribution: {“beta”: *, “mu”: *, “alpha”: *} - https://phitter.io/distributions/continuous/generalized_normal This distribution is known whit the following names: * Error Distribution * Exponential Power Distribution * Generalized Error Distribution (GED) * Generalized Gaussian distribution (GGD) * Subbotin distribution
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“beta”: *, “mu”: *, “alpha”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restriction
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.generalized_pareto module
- class phitter.continuous.continuous_distributions.generalized_pareto.GeneralizedPareto(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Generalized Pareto distribution - Parameters GeneralizedPareto Distribution: {“c”: *, “mu”: *, “sigma”: *} - https://phitter.io/distributions/continuous/generalized_pareto
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“c”: *, “mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.gibrat module
- class phitter.continuous.continuous_distributions.gibrat.Gibrat(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Gibrat distribution - Parameters Gibrat Distribution: {“loc”: *, “scale”: *} - https://phitter.io/distributions/continuous/gibrat
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“loc”: *, “scale”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.gumbel_left module
- class phitter.continuous.continuous_distributions.gumbel_left.GumbelLeft(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Gumbel Left Distribution Gumbel Min Distribution Extreme Value Minimum Distribution - https://phitter.io/distributions/continuous/gumbel_left
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.gumbel_right module
- class phitter.continuous.continuous_distributions.gumbel_right.GumbelRight(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Gumbel Right Distribution Gumbel Max Distribution Extreme Value Maximum Distribution
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.half_normal module
- class phitter.continuous.continuous_distributions.half_normal.HalfNormal(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Half Normal Distribution - https://phitter.io/distributions/continuous/half_normal
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (dict) – {“mu”: * , “variance”: * , “skewness”: * , “kurtosis”: * , “data”: * }
- Returns:
parameters
- Return type:
{“mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.hyperbolic_secant module
- class phitter.continuous.continuous_distributions.hyperbolic_secant.HyperbolicSecant(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Hyperbolic Secant distribution - Parameters HyperbolicSecant Distribution: {“mu”: *, “sigma”: *} - https://phitter.io/distributions/continuous/hyperbolic_secant
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (dict) – {“mu”: * , “variance”: * , “skewness”: * , “kurtosis”: * , “data”: * }
- Returns:
parameters
- Return type:
{“mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.inverse_gamma module
- class phitter.continuous.continuous_distributions.inverse_gamma.InverseGamma(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Inverse Gamma Distribution Also known Pearson Type 5 distribution - Parameters InverseGamma Distribution: {“alpha”: *, “beta”: *} - https://phitter.io/distributions/continuous/inverse_gamma
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “beta”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.inverse_gamma_3p module
- class phitter.continuous.continuous_distributions.inverse_gamma_3p.InverseGamma3P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Inverse Gamma Distribution Also known Pearson Type 5 distribution - Parameters InverseGamma3P Distribution: {“alpha”: *, “beta”: *, “loc”: *} - https://phitter.io/distributions/continuous/inverse_gamma_3p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “beta”: *, “loc”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.inverse_gaussian module
- class phitter.continuous.continuous_distributions.inverse_gaussian.InverseGaussian(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Inverse Gaussian Distribution Also known like Wald distribution - Parameters InverseGaussian Distribution: {“mu”: *, “lambda”: *} - https://phitter.io/distributions/continuous/inverse_gaussian
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (dict) – {“mu”: * , “variance”: * , “skewness”: * , “kurtosis”: * , “data”: * }
- Returns:
parameters
- Return type:
{“mu”: *, “lambda”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.inverse_gaussian_3p module
- class phitter.continuous.continuous_distributions.inverse_gaussian_3p.InverseGaussian3P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Inverse Gaussian Distribution Also known like Wald distribution - Parameters InverseGaussian3P Distribution: {“mu”: *, “lambda”: *, “loc”: *} - https://phitter.io/distributions/continuous/inverse_gaussian_3p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (dict) – {“mu”: * , “variance”: * , “skewness”: * , “kurtosis”: * , “data”: * }
- Returns:
parameters
- Return type:
{“mu”: *, “lambda”: *, “loc”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.johnson_sb module
- class phitter.continuous.continuous_distributions.johnson_sb.JohnsonSB(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Johnson SB distribution - Parameters JohnsonSB Distribution: {“xi”: *, “lambda”: *, “gamma”: *, “delta”: *} - https://phitter.io/distributions/continuous/johnson_sb
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated with the method proposed in [1].
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters – {“xi”: * , “lambda”: * , “gamma”: * , “delta”: * }
- Return type:
{“xi”: *, “lambda”: *, “gamma”: *, “delta”: *}
References
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.johnson_su module
- class phitter.continuous.continuous_distributions.johnson_su.JohnsonSU(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Johnson SU distribution - Parameters JohnsonSU Distribution: {“xi”: *, “lambda”: *, “gamma”: *, “delta”: *} - https://phitter.io/distributions/continuous/johnson_su
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
- Return type:
dict
[str
,float
|int
]
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.kumaraswamy module
- class phitter.continuous.continuous_distributions.kumaraswamy.Kumaraswamy(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Kumaraswami distribution - Parameters Kumaraswamy Distribution: {“alpha”: *, “beta”: *, “min”: *, “max”: *} - https://phitter.io/distributions/continuous/kumaraswamy
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “beta”: *, “min”: *, “max”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.laplace module
- class phitter.continuous.continuous_distributions.laplace.Laplace(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Laplace distribution - Parameters Laplace Distribution: {“mu”: *, “b”: *} - https://phitter.io/distributions/continuous/laplace
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“mu”: *, “b”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.levy module
- class phitter.continuous.continuous_distributions.levy.Levy(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Levy distribution - Parameters Levy Distribution: {“mu”: *, “c”: *} - https://phitter.io/distributions/continuous/levy
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“mu”: *, “c”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.loggamma module
- class phitter.continuous.continuous_distributions.loggamma.LogGamma(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
LogGamma distribution - Parameters LogGamma Distribution: {“c”: *, “mu”: *, “sigma”: *} - https://phitter.io/distributions/continuous/loggamma
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“c”: *, “mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.logistic module
- class phitter.continuous.continuous_distributions.logistic.Logistic(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Logistic distribution - Parameters Logistic Distribution: {“mu”: *, “sigma”: *} - https://phitter.io/distributions/continuous/logistic
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.loglogistic module
- class phitter.continuous.continuous_distributions.loglogistic.LogLogistic(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Loglogistic distribution - Parameters LogLogistic Distribution: {“alpha”: *, “beta”: *} - https://phitter.io/distributions/continuous/loglogistic
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “beta”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.loglogistic_3p module
- class phitter.continuous.continuous_distributions.loglogistic_3p.LogLogistic3P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Loglogistic distribution - Parameters LogLogistic3P Distribution: {“loc”: *, “alpha”: *, “beta”: *} - https://phitter.io/distributions/continuous/loglogistic_3p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“loc”: *, “alpha”: *, “beta”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.lognormal module
- class phitter.continuous.continuous_distributions.lognormal.LogNormal(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Lognormal distribution - Parameters LogNormal Distribution: {“mu”: *, “sigma”: *} - https://phitter.io/distributions/continuous/lognormal
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (dict) – {“mu”: * , “variance”: * , “skewness”: * , “kurtosis”: * , “data”: * }
- Returns:
parameters
- Return type:
{“mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.maxwell module
- class phitter.continuous.continuous_distributions.maxwell.Maxwell(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Maxwell distribution - Parameters Maxwell Distribution: {“alpha”: *, “loc”: *} - https://phitter.io/distributions/continuous/maxwell
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “loc”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.moyal module
- class phitter.continuous.continuous_distributions.moyal.Moyal(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Moyal distribution - Parameters Moyal Distribution: {“mu”: *, “sigma”: *} - https://phitter.io/distributions/continuous/moyal
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (dict) – {“mu”: * , “variance”: * , “skewness”: * , “kurtosis”: * , “data”: * }
- Returns:
parameters
- Return type:
{“mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.nakagami module
- class phitter.continuous.continuous_distributions.nakagami.Nakagami(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Nakagami distribution - Parameters Nakagami Distribution: {“m”: *, “omega”: *} - https://phitter.io/distributions/continuous/nakagami
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“m”: *, “omega”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restriction
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.non_central_chi_square module
- class phitter.continuous.continuous_distributions.non_central_chi_square.NonCentralChiSquare(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Non-Central Chi Square distribution - Parameters NonCentralChiSquare Distribution: {“lambda”: *, “n”: *} - https://phitter.io/distributions/continuous/non_central_chi_square
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“lambda”: *, “n”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.non_central_f module
- class phitter.continuous.continuous_distributions.non_central_f.NonCentralF(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Non-Central F distribution - Parameters NonCentralF Distribution: {“lambda”: *, “n1”: *, “n2”: *} - https://phitter.io/distributions/continuous/non_central_f
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“lambda”: *, “n1”: *, “n2”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.non_central_t_student module
- class phitter.continuous.continuous_distributions.non_central_t_student.NonCentralTStudent(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Non-Central T Student distribution - Parameters NonCentralTStudent Distribution: {“lambda”: *, “n”: *, “loc”: *, “scale”: *} - https://phitter.io/distributions/continuous/non_central_t_student Hand-book on Statistical Distributions (pag.116) … Christian Walck
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“lambda”: *, “n”: *, “loc”: *, “scale”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.normal module
- class phitter.continuous.continuous_distributions.normal.Normal(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Normal distribution - Parameters Normal Distribution: {“mu”: *, “sigma”: *} - https://phitter.io/distributions/continuous/normal
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (dict) – {“mu”: * , “variance”: * , “skewness”: * , “kurtosis”: * , “data”: * }
- Returns:
parameters
- Return type:
{“mu”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.pareto_first_kind module
- class phitter.continuous.continuous_distributions.pareto_first_kind.ParetoFirstKind(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Pareto first kind distribution distribution - Parameters ParetoFirstKind Distribution: {“alpha”: *, “xm”: *, “loc”: *} - https://phitter.io/distributions/continuous/pareto_first_kind
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “xm”: *, “loc”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restriction
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.pareto_second_kind module
- class phitter.continuous.continuous_distributions.pareto_second_kind.ParetoSecondKind(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Pareto second kind distribution Distribution Also known as Lomax Distribution or Pareto Type II distributions - https://phitter.io/distributions/continuous/pareto_second_kind
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “xm”: *, “loc”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restriction
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.pert module
- class phitter.continuous.continuous_distributions.pert.Pert(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Pert distribution - Parameters Pert Distribution: {“a”: *, “b”: *, “c”: *} - https://phitter.io/distributions/continuous/pert
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (dict) – {“mean”: * , “variance”: * , “skewness”: * , “kurtosis”: * , “median”: * , “b”: * }
- Returns:
parameters
- Return type:
{“a”: *, “b”: *, “c”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.power_function module
- class phitter.continuous.continuous_distributions.power_function.PowerFunction(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Power function distribution - Parameters PowerFunction Distribution: {“alpha”: *, “a”: *, “b”: *} - https://phitter.io/distributions/continuous/power_function
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “a”: *, “b”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.rayleigh module
- class phitter.continuous.continuous_distributions.rayleigh.Rayleigh(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Rayleigh distribution - Parameters Rayleigh Distribution: {“gamma”: *, “sigma”: *} - https://phitter.io/distributions/continuous/rayleigh
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“gamma”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.reciprocal module
- class phitter.continuous.continuous_distributions.reciprocal.Reciprocal(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Reciprocal distribution - Parameters Reciprocal Distribution: {“a”: *, “b”: *} - https://phitter.io/distributions/continuous/reciprocal
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“a”: *, “b”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.rice module
- class phitter.continuous.continuous_distributions.rice.Rice(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Rice distribution - Parameters Rice Distribution: {“v”: *, “sigma”: *} - https://phitter.io/distributions/continuous/rice
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“v”: *, “sigma”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.semicircular module
- class phitter.continuous.continuous_distributions.semicircular.Semicircular(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Semicicrcular Distribution - https://phitter.io/distributions/continuous/semicircular
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (dict) – {“mu”: * , “variance”: * , “skewness”: * , “kurtosis”: * , “data”: * }
- Returns:
parameters
- Return type:
{“loc”: *, “R”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.t_student module
- class phitter.continuous.continuous_distributions.t_student.TStudent(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
T distribution - Parameters TStudent Distribution: {“df”: *} - https://phitter.io/distributions/continuous/t_student
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“df”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.t_student_3p module
- class phitter.continuous.continuous_distributions.t_student_3p.TStudent3P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
T distribution - Parameters TStudent3P Distribution: {“df”: *, “loc”: *, “scale”: *} - https://phitter.io/distributions/continuous/t_student_3p
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by solving the equations of the measures expected for this distribution.The number of equations to consider is equal to the number of parameters.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“df”: *, “loc”: *, “scale”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.trapezoidal module
- class phitter.continuous.continuous_distributions.trapezoidal.Trapezoidal(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Trapezoidal distribution - Parameters Trapezoidal Distribution: {“a”: *, “b”: *, “c”: *, “d”: *} - https://phitter.io/distributions/continuous/trapezoidal
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“a”: *, “b”: *, “c”: *, “d”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.triangular module
- class phitter.continuous.continuous_distributions.triangular.Triangular(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Triangular distribution - Parameters Triangular Distribution: {“a”: *, “b”: *, “c”: *} - https://phitter.io/distributions/continuous/triangular
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“a”: *, “b”: *, “c”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.uniform module
- class phitter.continuous.continuous_distributions.uniform.Uniform(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Uniform distribution - Parameters Uniform Distribution: {“a”: *, “b”: *} - https://phitter.io/distributions/continuous/uniform
- cdf(x)
Cumulative distribution function
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“a”: *, “b”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.weibull module
- class phitter.continuous.continuous_distributions.weibull.Weibull(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Weibull distribution - Parameters Weibull Distribution: {“alpha”: *, “beta”: *} - https://phitter.io/distributions/continuous/weibull
- cdf(x)
Cumulative distribution function. Calculated with known formula.
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “beta”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance
phitter.continuous.continuous_distributions.weibull_3p module
- class phitter.continuous.continuous_distributions.weibull_3p.Weibull3P(parameters=None, continuous_measures=None, init_parameters_examples=False)
Bases:
object
Weibull distribution - Parameters Weibull3P Distribution: {“alpha”: *, “loc”: *, “beta”: *} - https://phitter.io/distributions/continuous/weibull_3p
- cdf(x)
Cumulative distribution function. Calculated with known formula.
- Return type:
float
|ndarray
- central_moments(k)
Parametric central moments. µ’[k] = E[(X - E[X])ᵏ] = ∫(x-µ[k])ᵏ∙f(x) dx
- Return type:
float
|None
- get_parameters(continuous_measures)
Calculate proper parameters of the distribution from sample continuous_measures. The parameters are calculated by formula.
- Parameters:
continuous_measures (MEASUREMESTS) – attributes: mean, std, variance, skewness, kurtosis, median, mode, min, max, size, num_bins, data
- Returns:
parameters
- Return type:
{“alpha”: *, “loc”: *, “beta”: *}
- property kurtosis: float
Parametric kurtosis
- property mean: float
Parametric mean
- property median: float
Parametric median
- property mode: float
Parametric mode
- property name
- non_central_moments(k)
Parametric no central moments. µ[k] = E[Xᵏ] = ∫xᵏ∙f(x) dx
- Return type:
float
|None
- property num_parameters: int
Number of parameters of the distribution
- parameter_restrictions()
Check parameters restrictions
- Return type:
bool
- property parameters_example: dict[str, int | float]
- pdf(x)
Probability density function
- Return type:
float
|ndarray
- ppf(u)
Percent point function. Inverse of Cumulative distribution function. If CDF[x] = u => PPF[u] = x
- Return type:
float
|ndarray
- sample(n, seed=None)
Sample of n elements of ditribution
- Return type:
ndarray
- property skewness: float
Parametric skewness
- property standard_deviation: float
Parametric standard deviation
- property variance: float
Parametric variance